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Effects of geometric confinement on the adhesive debonding of soft elastic solids
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The effect of increasing confinement on soft elastic gel layers has been investigated and a means of
analyzing the behavior of such systems has been developed. A probe tack test was used to study the behavior
of thin elastic layers during interfacial debonding from a cylindrical glass indenter. For this gel-indenter
system, confinement is defined as the ratio ofa0 , the radius of the indenter, toh, the thickness of the elastic
layer. In order to investigate geometric effects, the adhesion energy of the gel was kept constant while the
thickness and modulus of the gels were varied. A fracture mechanics approach, based on the compliance of the
layer, has been employed in analyzing the experimental data. It is shown that a fracture mechanics analysis is
appropriate for these systems, allowing quantitative results to be obtained, despite very irregular contacts. It
has also been shown that the interfacial instabilities observed during debonding maximize the compliance of
the elastic layer. Additionally, four dimensionless parameters that dictate the behavior of confined systems have
been defined, offering a general guide to understanding and characterizing the mechanical behavior of thin
elastic layers.
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I. INTRODUCTION

Understanding the behavior of thin, compliant layers is
vital importance in a wide variety of applications, includin
pressure sensitive adhesives@1# and hydrogel bioadhesive
@2#. The deformation behavior of thin, compliant materials
dependent not only on material properties, but also on
confinement of the layer, which can be expressed as a
of the lateral dimensions of the adhesive layer to its thi
ness@3–7#. The relationship between confinement and def
mation has been investigated in Newtonian fluids@8–10#,
viscoelastic fluids@11#, and yield stress fluids@12–14#, with
the Saffman-Taylor instability@15# being the classic exampl
of work in this area. The adhesive debonding behavior
confined elastic systems has also been explored and fin
like bulk instabilities, similar to those seen in fluids, ha
been observed in elastic gels strained in tension@5,7,16#. The
emphasis in these systems has been on the characteriz
and prediction of bulk elastic instabilities during debondin
However, an area of current interest involves the interfa
debonding behavior of compliant elastic systems@3,4,6#.
Ghataket al. @3# and Mönch and Herminghaus@6# have in-
vestigated the fingerlike instabilities that appear at the in
face between a rigid substrate and a thin, elastic film us
nonaxisymmetric geometries. The wavelengths of these
stabilities are linearly related to the thickness of the ela
layer @3,4,6#. A better understanding of the underlying phy
ics of this phenomenon can be achieved with additional
methods. Here, a method of analysis based on stress d
bution and material compliance considerations is introdu
to describe the interfacial debonding phenomena observe
soft, confined elastic layers. We focus specifically on
transition from circular edge crack propagation to interfac
crack fingering as the system confinement increases. Su
situation is representative of the practical case where a
1063-651X/2003/68~2!/021805~11!/$20.00 68 0218
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elastic or viscoelastic layer is confined between weakly
hering surfaces.

It has been shown that the bulk fingering instabilities
thin elastic layers are not the result of plastic yielding
viscous flow; they originate instead from the elastic nature
the material@3–6#. The geometry of a flat punch contacting
thin gel layer, shown in Fig. 1, is useful for fundament
studies of these instabilities. This geometry provides a w
defined initial contact radius corresponding to the radius
the punch. The ratio of the punch radius (a0) to the elastic
layer thickness (h) provides a quantitative measure
sample confinement. Moreover, the stress distribution
posed by this geometry, shown in Fig. 2, has been quanti
@5,17,18#. The nature of the debonding process can be rela
to the stress distribution at the surface of the cylindri
punch. Regardless of the confinement ratio, a singularity
the tensile stress exists at the edge of the cylinder. Howe
for low values ofa0 /h, the stress decreases monotonica
toward the center of the punch. Asa0 /h increases, a secon
maximum in stress appears at the center of the punch,
the edge singularity becomes restricted to an increasin

FIG. 1. The geometry of the adhesion test, a flat cylindri
punch with radiusa0 in contact with a thin elastic layer with thick
nessh. System confinement is defined asa0 /h.
©2003 The American Physical Society05-1



s
lo
ng

th
ye
ve
r
t

de

er
ich

t
a

s
a

ot
om
er
te
e
h

d
re
u
id
e

test
he
iti-
ion
ng

e
ding
n-

, it
rgy
ip:

d
ion

nd
pa-
as
tact
as-
.
li-

istic
-

,
g re-

on,

in-
ent

r-
on-
nd

ap-

y

ac

WEBBER et al. PHYSICAL REVIEW E 68, 021805 ~2003!
smaller fraction of the punch surface.
This change in the nature of the stress distribution ha

profound influence on the debonding mechanisms. For
values ofa0 /h, the contact area remains circular, shrinki
in size as the indenter is retracted from the elastic layer@5#.
In this case, a circular crack propagating from the edge of
layer inward maximizes the compliance of the elastic la
for a given applied displacement and contact area. Howe
for thinner samples, the layer compliance is maximized fo
more complicated deformation process. In many cases,
thin layer will cavitate internally to relieve the stresses un
the center of the punch@17#. However, it is difficult for very
soft materials, such as gels, to work against atmosph
pressure to achieve this. Fingerlike instabilities, wh
propagate along the interface~if adhesion is weak! or in the
bulk ~if adhesion is strong!, occur instead. These differen
types of failure morphologies are apparent in soft gels
higher confinements where the confinement ratioa0 /h is
greater than 1.

In this work, we investigate the behavior of confined sy
tems using an axisymmetric probe tack test fitted with a fl
ended probe. The probe tack technique is a good method
investigating elastic instabilities in thin gels because b
quantitative and qualitative information can be gleaned fr
the experiments. The data collected from this type of exp
ment allow a contact mechanics analysis to be used in in
preting results, giving detailed information about the m
chanical and adhesive behaviors of the thin layers. T
contact area images collected add a more qualitative un
standing of the failure phenomenon by showing the prog
sion of debonding throughout the test. Furthermore, the
of a cylindrical probe allows convenient access to a w
range of confinement ratios. In the following section, w

FIG. 2. The normal stress distribution for a flat punch in cont
with a thin elastic layer as a function of confinement (a0 /h). The
stress is normalized by the average tensile stress (P/pa0

2) @7#.
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outline the general compliance method used to analyze
results on thin gel layers, followed by a discussion of t
debonding behavior for axisymmetric contact below a cr
cal value ofa0 /h. We then discuss the expected separat
behavior above the critical value of confinement, maki
predictions for the mechanical behavior in this regime. W
then describe our experimental results, categorized accor
to confinement values, in order to explore in detail the co
ditions for which contact is no longer axisymmetric.

II. COMPLIANCE METHOD

In analyzing probe tack experiments on thin gel layers
is useful to consider the expression for stored elastic ene
U for a system with a linear load-displacement relationsh

U5
1

2
dP5

d2

2C
, ~1!

whereP is the tensile load,d is the tensile displacement, an
C is the compliance of the thin layer. The general express
for the energy release rate~G! follows from Eq.~1!:

G5
]U

]A
52

d2

2C

]C

]A
52

P2

2

]C

]A
, ~2!

whereA is the circular area of contact between the layer a
indenter. The energy release rate is the driving force for se
ration of the sample from the indenter. It can be viewed
the applied energy per area available to reduce the con
area by a unit amount, driving a crack forward and incre
ing the compliance of the layer@19#. The assumption in Eqs
~1! and ~2! is that for a fixed contact geometry, the comp
ance is constant and defined as

C5
d

P U
A

. ~3!

The gel used in these investigations has this character
@20#, making Eq.~2! applicable for both circular and noncir
cular contact areas.

The critical energy release rate (Gc), a system parameter
represents the energy required to advance a crack durin
ceding contact. For the gels in these experiments,Gc is
nearly equivalent to the thermodynamic work of adhesi
the lower bound forG for a decreasing contact area@20,21#.
For a given displacement, the contact area between the
denter and the elastic layer is determined by the requirem
that G equalsGc . The shape of this contact will be dete
mined by the requirement that the compliance at a fixed c
tact area is maximized. If the contact remains circular a
the elastic layer is incompressible, the compliance is
proximated by

C5
3

8Ea F111.3 3
a

h
11.33S a

hD 3G21

, ~4!

whereE is Young’s modulus of the layer anda is the radius
of the actual contact area@21#. This equation was derived b
fitting the finite element data of Ganghoffer and Gent@22#

t
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and is valid for an incompressible elastic layer wheren
50.5. As discussed in Sec. III, this assumption is valid
the gels utilized in our experiments. The energy release
for axisymmetric crack propagation is obtained by comb
ing Eqs.~1! and ~3!:

G5
2Ed2

3ph
~a/h!21F112.67S a

hD15.33S a

hD 3G . ~5!

Note that more general versions of Eqs.~4! and~5! valid for
compressible elastic materials are also available@17,21,23#,
but are not necessary for our materials. Figure 3 shows a
of Eq. ~5! as a function ofa/h. This curve experiences
minimum ata/h50.45, whereG5 1.27Ed2/h . The confine-
ment ratio at the minimum inG represents a critical valu
separating qualitatively different detachment behaviors. D
cussed below are the expected separation behaviors for
ferent values ofa0 /h; in all cases, the contact area is a
sumed to remain circular, with a single value ofGc
characterizing the detachment. We also assume that the
paratus itself is much stiffer than the elastic layer, so t
displacement applied to the elastic layer is directly co
trolled. This assumption is generally true for our gels, but
quantitative predictions need to be modified for highly co
fined layers with a sufficiently large elastic modulus. In the
cases, the stored elastic energy in the device itself also n
to be taken into account@24,25#.

A. a0 ÕhÄ0

The limiting case is a very thick, unconfined layer, f
which a/h is effectively zero. Detachment occurs whenG
5Gc at a displacementdmax:

dmax

a0
5S 3p

2 D 1/2S Gc

Ea0
D 1/2

. ~6!

Combining Eq.~3!, Eq.~4! with a/h50, and the definition of
an average engineering stressseng5P/pa0

2 leads to the re-

FIG. 3. Normalized energy release rate as a function of confi
ment. The minimum in the curve represents the critical value
which a/h begins to affect the separation behavior of a flat pun
from an elastic layer.
02180
r
te
-

lot

-
if-

-

ap-
t
-
e
-
e
ds

lationship between engineering stress and normalized
placement for displacement values less than the maxim
value:

seng

E
5

8

3p

d

a0
. ~7!

A plot of seng/E vs d/a0 forms a straight line with a slope o
0.85 that terminates at the value ofdmax/a0 given by Eq.~6!.
During this stage, the energy release rateG is always lower
than the critical valueGc and the contact radius does n
change. At the point of maximum displacement,G becomes
equal toGc and the radius of contact decreases. Since,
this value ofa0 /h, G increases with decreasing contact rat
the system is unstable and, in the absence of viscoela
dissipation, the radius of contact jumps froma0 to zero.

B. 0Ëa0 ÕhË0.45

For nonzero values ofa0 /h that are below 0.45, the be
havior is similar to the limiting case ofa0 /h50, despite the
increased stiffness of the system. The contact radius ju
from a0 to zero on separation. However, detachment occ
at a lower value of the maximum displacement. Also, t
value of a0 /h now becomes important in determining th
pull-off condition, obtained by settingG5Gc in Eq. ~5!.

C. a0 ÕhÌ0.45

For a0 /h greater than the critical value of 0.45, the sep
ration behavior becomes more complicated, asG decreases
with decreasing contact radius. As a result there exists
equilibrium solution (G5Gc) to Eq.~5!, and the contact area
decreases at equilibrium during detachment. However,
possible to predict the mechanical behavior by genera
predicted tack curves, as long as the contact remains axis
metric. SettingG5Gc , we can rearrange Eq.~5! to obtain

Gc

Ea0
5

2«2

3pba0
2 $112.67ba015.33b3a0

3%, ~8!

where«5d/h represents the effective strain,b5a/a0 is a
fractional contact radius describing the progression of
detachment, anda0 is defined as the initial confinemen
(a0 /h). Gc /Ea0 is a meaningful dimensionless parame
that relates the importance of adhesive forces in a system
the contribution of the elastic strain energy for a semi-infin
elastic half space.

If values forGc , E, h, anda0 are known, Eq.~8! can be
solved to determineb at any value of the strain«. Onceb is
known, the average engineering stress can be calculated
the following rearrangement of Eq.~3!:

seng

E
5«H 0.85

1

a0
11.13b211.13b6a0

2J . ~9!

This situation is similar to thea0 /h50 case whereseng/E is
a linear function of displacement. Initially,seng/E increases
linearly with effective strain,G,Gc , and the slope is defined
by the bracketed term in Eq.~9! with b51 (a5a0). The

e-
t

h
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WEBBER et al. PHYSICAL REVIEW E 68, 021805 ~2003!
maximum inseng/E occurs at the effective strain at whic
Eq. ~8! is satisfied forb51. After this point,b andseng/E
decrease untila/h50.45, where pull-off occurs abruptly. Be
cause pull-off occurs whena50.45h, we can obtain an ex
pression for this pull-off displacementd* by settingG5Gc
anda50.45h in Eq. ~5!:

d*

h
50.89S Gc

EhD 1/2

. ~10!

Three predicted tack curves, created by plotting value
seng as a function of the effective strain«, are shown in Fig.
4 for various confinement values. The confinement varie
a0 is changed. Increasinga0 /h increases the maximum
stress and changes the initial slope of the curves. Howe
after the maximum stress is reached, the curves all fall al
the same equilibrium line for a given value ofGc /Ea0 . Fig-
ure 4 displays two of these ‘‘envelope’’ curves forGc /Ea0
values of 0.1 and 0.3. Sinced is normalized byh to give «,
a change in confinement corresponds to a fixed value oh
and a change ina: the situation of a slow crack propagatio
at fixedGc . The predicted stress depends only on the curr
value ofa, and not on its initial valuea0 . An increase in the
initial confinement (a0 /h) decreases the initial complianc
of the layer and increases the stress required for the con
radius to begin shrinking.

Figure 5 displays predicted tack curves for the same
ues of confinement shown in Fig. 4. However, in this ca
seng/E is plotted as a function ofd/a0 . Plotting the curves
in this way provides a simpler way of presenting the chan
in the tack curves that are expected by varyingh at a fixed
value ofa0 . For each of the three curves in Fig. 5Gc /Ea0
50.1. As in the case of Fig. 4, the maximum stress increa
with confinement. However, the shape of the curves n
varies witha0 /h, indicating that the behavior depends onh.
Although the shapes of the three curves in Fig. 5 are dif
ent, the areas under the curves are equal, determined b

FIG. 4. Predicted tack curves for confinement values of 1, 3,
5 (Gc /Ea050.1) plotted vs displacement normalized by thickne
The thickness remains constant, making the variation in confi
ment dependent on changinga0 . Two envelope curves forGc /Ea0

values of 0.1~dotted line! and 0.3~dashed line! asa0 /h approaches
infinity are also shown.
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constant value ofGc that is assumed. The area under ea
curve represents the energy required to separate the two
faces and is equivalent to the energy release rate. To dem
strate this idea, we can equate the total mechanical en
put into the system with the energy required to separate
two surfaces@26#:

E Pdd5E GdA. ~11!

If G is equal toGc throughout separation, Eq.~10! can be
rearranged to give

Gc5
1

pa0
2 E Pdd. ~12!

To relate this to the predictions in Fig. 5, we can rewrite t
expression in the following form:

Gc

Ea0
5E seng

E
d~d/a0!. ~13!

Figure 5 shows that, as confinement varies, the maxim
displacement and stress change, while the area under
curve remains constant for a givenGc . Detachment of in-
denter from the elastic layer occurs whend5d* , with d*
given by Eq.~10!.

As discussed in more detail in the subsequent sections
contact radius does not remain circular fora0 /h.1. Many of
the results of this section remain valid, however, even wh
shape instabilities resulting in nonaxisymmetric contact
observed. These issues are discussed in more detail in
IV.

III. MATERIALS AND METHODS

A schematic of the axisymmetric probe tack test appara
is shown in Fig. 6. The test method, described in detail e
where, entails bringing a rigid indenter into and out of co
tact with the surface of a thin layer using a piezoelect

d
.
e-

FIG. 5. Predicted tack curves for various confinement val
plotted as a function of displacement normalized by initial cont
radius.a0 /h changes as the thickness of the sample is varied, w
a0 remains constant.
5-4
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EFFECTS OF GEOMETRIC CONFINEMENT ON THE . . . PHYSICAL REVIEW E 68, 021805 ~2003!
stepping motor@21,27#. Load and displacement data are co
lected through a load transducer and optical displacem
sensor, while images of the area of contact between the
denter and the sample are captured by a video camer
tached to an inverted microscope with a 2.53 objective lens.
For the tests witha0 /h,7, the radius of the indenter (a0)
was generally 1.25 mm. The test with a confinement ratio
25 was performed on a different apparatus, fitted with a
vice designed to adjust the parallelism between the film
the probe. This high confinement apparatus is similar
scope although slightly different in mechanical design@25#.

The elastic layer used in these investigations is a ph
cally cross-linked polymer gel, made by dissolving a triblo
copolymer in 2-ethyl hexanol. The triblock has poly~methyl
methacrylate! end blocks and a poly~tert-butyl acrylate! mid-
block with molecular weights of 29 000 and 100 000 resp
tively. The triblock copolymer was synthesized according
the methods of Varshneyet al. @28# and has been describe
previously. The gel is a thermally reversible, low modul
elastic solid at room temperature with a gel point near 60
@20,21,29#. The volume fraction of copolymer in solutio
determines the modulus of the resulting gel. In this wo
volume fractions between 0.036 and 0.2, corresponding
Young’s moduli between 300 and 10 000 Pa, were used.

The gels have a finite osmotic compressibility, resulting
a time-dependent value of Poisson’s ratio as solvent diffu
from regions of low to high hydrostatic tension. In order
develop a generalized framework for evaluating the imp
tance of these effects in polymer gels, we utilize an analy
based on the value of the osmotic modulusKos that is ex-
pected for these gels. The osmotic modulus is related to
concentration dependence of the osmotic pressure, which
semidilute solutions typically obeys a simple power la
form @30#. The following specific expression accurately d
scribes the concentration dependence ofKos for poly~a-
methyl styrene! in toluene@31#:

Kos[fp

]p

]fp
'6.603106fp

2.32 ~Pa!. ~14!

FIG. 6. A schematic of the probe tack apparatus for adhes
testing. The motor advances the punch into, and retracts it a
from, the elastic layer while data are collected.
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While the specific values ofKos vary to some extent from
system to system, the values given by Eq.~14! are represen-
tative of most flexible polymers in good solvents. Valu
obtained forKos for poly~methyl methacrylate! in a variety
of solvents are very similar to the values given by Eq.~14!,
for example@32#. For the gels used in our experiments, w
can estimateKos from Eq. ~14!, where fp is the average
volume fraction of the poly(t-butyl acrylate! midblock, for
which 2-ethyl hexanol is assumed to be a good solvent.

For an isotropic material, Poisson’s ratio is related to
ratio of the shear modulus to the bulk compressive modu
An analogous osmotic Poisson rationos can be similarly de-
fined in terms ofG andKos @33#:

nos5
322~G/Kos!

612~G/Kos!
. ~15!

Comparison of the measured values ofG for our gels@20# to
the predictions of Eq.~14!, givesG/Kos'0.1, corresponding
to a value of 0.45 fornos. This value corresponds to th
‘‘relaxed’’ Poisson ratio for the gel, over time scales lon
enough for the solvent distribution under the punch to equ
brate in response to the applied stress. The short-time v
of the Poisson ratio is equal to 0.5, due to the incompre
ibility of the solvent itself. The transition between these tim
scales is determined by the collective diffusion coefficient
the gel, which for semidilute solutions can be written in t
following form @34#:

Dc5
kBT

6ph0jh
, ~16!

whereh0 is the solvent viscosity~0.1 P for 2-ethyl hexanol
at room temperature@35#! and jh is the hydrodynamic
screening length. For semidilute solutions of a polymer in
good solvent, the screening length can be expressed in
following scaling form@30#:

jh5afp
20.75. ~17!

Measured values ofjh for polystyrene in benzene@34# and
polyacrylamide in water@36# are in good agreement with thi
prediction, witha'0.5 nm.

From Eqs.~16! and ~17!, we expectDc'1027 cm2/s for
our gels. The longest experimental time scale in our exp
ments is about one minute, corresponding to a maxim
diffusion distance 2(Dct)

1/2 of 40 mm, which is less than the
thickness of even our thinnest layers, and much less than
lateral dimensions of the punch over which solvent m
diffuse in order to modify the mechanical response of
layer. This same result can also be obtained by a mathem
cally equivalent analysis based on pressure driven flow
solvent through the gels@37–39#.

While the analysis presented here neglects some quan
tive details ~we have neglected contributions of netwo
elasticity toKos, for example!, the essential message is clea
the gels can be treated as incompressible solids withn
50.5 on the time scale of our experiments. However,
presence of a substantial solvent fraction reduces viscoel

n
ay
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effects so that the critical energy release rate is relativ
insensitive to crack velocity and to polymer volume fractio
For the rates and concentrations of relevance here,Gc is
equal to approximately twice the surface energy of 2-et
hexanol for a wide range of surfaces (Gc50.06 J/m2) @20#.
This feature of the gels, together with their we
characterized structure and the ability to vary the modu
shape, and size of the gel samples, makes them ideal m
solids for these investigations.

IV. RESULTS AND DISCUSSION

In order to clearly demonstrate the effect of the confin
ment ratio, this section is divided into four subsections c
responding to different ranges ofa0 /h.

A. 0.45Ëa0 ÕhË1

For elastic layers with confinement ratios less than 1,
contact area remains circular during debonding, as expe
for low values of a0 /h. Figure 7 shows a plot of stres
versus displacement for a layer experiencing axisymme
edge crack propagation, where contact remains circ
(a0 /h50.78,E510 000 Pa, andh51.6 mm). The test con
sisted of bringing the indenter into contact with the surfa
of the gel layer prior to testing and then retracting it out
contact. The shaded area under the curve represents th
ergy release rate for this test, 0.07 J/m2. This value, calcu-
lated from Eq.~12!, agrees well with the expected value.

B. 1Ëa0 ÕhË4

Figure 8 displays a stress-displacement plot with the
companying contact images for a gel layer witha0 /h
51.93. The modulus and thickness of this layer are 1000
and 647mm, respectively. As expected from the stress dis
bution, preferred debonding was observed at the cente
contact, although it occurred via an instability nucleati
from the edge of the sample. The 2.5 cycles of receding
advancing contact that were imposed on this layer disp

FIG. 7. The average stress-displacement curve for an elasti
layer experiencing axisymmetric edge crack propagation (a0 /h
50.78). The indenter was advanced into the sample prior to
test; the data displayed were collected during retraction of
punch. The shaded area represents the critical energy releas
(Gc), in this case equal to the thermodynamic work of adhesion
02180
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the repeatability and consistency of the nonadhesive deb
ing process. The inset in the plot displays the maxim
stress peak with arrows pointing to three receding con
images, during the nucleation of the instability, followed
three advancing contact images. During the first half cyc
debonding commences with the introduction of a finger fro
one edge, which slowly grows toward the center of conta
As the indenter is advanced back into the sample the
time, the finger shrinks and is pinched off, leaving a bubb
like region in the center that cannot be pushed out. The s
sequent cycles progress in the same manner, with an in
bility growing in from one edge to join the central bubb
during separation and then shrinking back on punch adva
leaving the bubble in place. The maximum stress during
first cycle represents the stress required to begin to decr
the contact area between the indenter and the gel. The m
mum stress in subsequent cycles is lower because, onc
central cavity is created, the stress required to continue d
onding is less.

For these low modulus gels, the bubblelike cavity th
remains after the instability is initiated can be thought of a
nearly incompressible inclusion with a shear modulus
zero. This can be demonstrated by considering the ratiop/E,
the atmospheric pressure divided by the modulus of elas
ity. For an ideal gas, the bulk compressive modulus desc
ing the resistance to volume changes is equal to the pres
of the gas itself. In the case of the gel,p/E describes the
hydrostatic stress required to change the volume of the
relative to the deviatoric stress required to change the sh
of the gel. If the value of this parameter is much larger th
1, atmospheric forces dominate over the stiffness of the
and the trapped bubble will change its shape but not its v
ume. For the triblock copolymer gels,p/E is between 20 and
100. It is because of the large value of this ratio that a cen
cavity is introduced via an edge instability rather th
through cavitation of the gel in the center, which for lo

el

e
e
rateFIG. 8. The average stress-displacement curve for an elastic
layer with a0 /h51.93. The inset shows the maximum stress pe
reached during the first pull-off cycle. The images correspond
this peak, displaying the initiation and growth of a fingering ins
bility, followed by the disappearance of the instability into a ca
tated bubble as the indenter is pushed back into the layer.
5-6
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EFFECTS OF GEOMETRIC CONFINEMENT ON THE . . . PHYSICAL REVIEW E 68, 021805 ~2003!
values ofp/E occurs forseng/E.;1 @7,18#. The gel cannot
overcome compressive atmospheric forces to form inte
voids. This accounts for the compliance and displacem
offset effects observed in the experimental data. The cen
bubble, acting as an inclusion, restricts compression of
gel back to zero displacement, resulting in a displacem
shift.

It is useful at this point to distinguish between open a
closed detachment zones. In Fig. 8, the top five images
play open detachment zones in which debonding propag
from the edge and the detachment zone is accessible to
atmosphere. The bottom image in Fig. 8 displays a clo
detachment zone, in which detachment has occurred betw
the sample and indenter, but the detachment zone is not
to the atmosphere. It is the closed detachment zones
behave as the incompressible inclusions described ab
They form because, for a given value of the contact area,
particular geometry minimizes the total elastic energy of
system.

Figure 9 displays experimental compliance curves
each cycle of this sample (a0 /h51.93). Experimental com
pliance is represented byd/P from Eq. ~3!, and the contact
areas plotted on thex axis are established through analysis
the contact area images. In calculating the experimental c
pliance for cycles 2 and 3, an offset of 25mm is included in
the displacement values to account for the presence of
closed detachment zone that is introduced~see inset of Fig.
8!. The same relationship between compliance and conta
observed for each cycle. Additionally, thed/P values are
only slightly larger than the compliance values for a circu
contact zone with the same total area, given by Eq.~4! and
shown by the solid curve in Fig. 9. This very small increa
in compliance is responsible for the dramatic change
served in the contact behavior. In other words, this sho
that the compliance of the layer in this weakly confined
gime is only weakly affected by the detailed shape of
contact area. Interestingly, an identical conclusion has b

FIG. 9. Experimental compliance curves for an elastic gel la
with a0 /h51.93. A is the measured contact area.d/P curves are
shown for each of the 2.5 cycles. Cycle 3 represents the last
cycle of the experiment. The solid line depicts the axisymme
compliance determined from Eq.~4! and assuming a circular con
tact with the same total area as the irregular contact (A5pa2).
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obtained for the case where the elastic layer is replaced
Newtonian fluid@14#.

C. a0 ÕhÌ4

The stress-displacement curve for a more highly confin
sample (a0 /h56.07) is shown in Fig. 10. In this case, th
indenter was pulled out of initial contact with the layer un
separation. The Young’s modulus of this layer is 5000
while its thickness is 206mm. The images accompanying th
stress-displacement curve show contact instabilities be
ning to nucleate from one side of the punch before the st
maximum is reached. The asymmetry of the detachmen
attributed to the difficulty in perfectly aligning a flat indente
with respect to the sample surface. Both open and clo
detachment zones are apparent in the images in Fig. 10. M
tiple instabilities move in from the edge of the sample as
punch is retracted. From Fig. 10, it is evident that thinn
samples have more and smaller fingerlike instabilities.
discussed in more detail below, our observation that the
of these instabilities is directly related to the thickness of
layer is consistent with other experiments using highly co
fined systems with nonaxisymmetric geometries@3,4,6#.

Figure 11 displaysd/P values plotted against the mea
sured contact areas for this sample (a0 /h56.07). As in Fig.
9, the experimental compliance for the noncircular cont
geometry (d/P) is compared to the compliance predictio
given by Eq.~4!, which assumes a circular contact. The e
perimental compliance~symbols! is clearly higher than the
compliance for a circular contact area of the same size~solid
line!. The fingering instabilities maximize the compliance
the gel layer beyond what axisymmetric debonding co
achieve, reducing the stored elastic energy.

r

alf
c

FIG. 10. The average stress-displacement curve for a layer
a0 /h56.07. The images correspond to the curve, displaying
onset and growth of fingering instabilities.
5-7
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Not only is the compliance treatment useful in quantifyi
the difference in behavior observed in confined systems,
with the same equations it is possible to generate con
area values directly from measured load and displacem
data. Using experimental load and compliance values fr
Eq. ~3!, Eq. ~2! can be used to determine eitherGc or A. For
the case in whichGc is known, a contact area profile can b
determined by plottingP2/2Gc as a function of compliance
and integrating this curve to calculate the change inA at each
point along the load-displacement curve:

A~d5D!5pa0
22

1

2Gc
E

d50

D

P2~d!d~d/P!. ~18!

Using this approach, it is possible to determine the amoun
material in contact with the indenter at any point during de
onding without actually seeing the contact area. Note that
contact area does not need to remain circular in order for
approach to be valid, since no assumptions are made a
the detailed nature of the compliance function. The only
sumption is that for a given contact geometry the relations
between load and displacement is linear.

Figure 12 compares the measured and calculated co
areas for the sample witha0 /h56.07. The contact areas ca
culated using Eq.~18! are in good agreement with the actu
areas measured from the contact images. This straigh
ward analysis is possible when the energy release rat
known and does not vary with crack velocity over the ran
of values tested. This criterion is met for the gels discus
here, but it is not satisfied for elastomeric materials in g
eral @40#. For this reason a quantitative analysis of the b
havior of confined viscoelastic solids is much more comp
cated.

D. a0 ÕhÌ20

Figures 13 and 14 display a stress-displacement curve
the accompanying contact area images for a very soft hig

FIG. 11. Curves of experimental and predicted compliance fo
layer with a0 /h56.07. A is the measured contact area. Thed/P
curve ~dots! is higher than the predicted axisymmetric complian
from Eq. ~4! ~solid line!, displaying that the instabilities introduce
during debonding maximize the compliance of the thin layer.
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confined layer (a0 /h525, E;300 Pa, h5100mm, a0

52.5 mm) in which instabilities are also observed on a
vancing contact. During this test, the cylindrical indenter w
advanced into the layer and then retracted until comp
separation. In Fig. 14, the first four images display the p
gression of advancing contact, while the bottom-most ima
was taking during punch retraction. As the punch advan
into the sample, initial contact is made at an asperity, a
which the contact grows by the appearance of fingers w
wavelengths on the order of a few times the layer thickne
The fingers eventually form channels that pinch off to fo
voids, which are pushed to the edge of contact as the pu
continues to compress the layer. During pull-off, the vo
motion reverses toward the center of contact, followed by
propagation of fingers from the edge that grow together
achieve complete separation. Again, both open and clo
detachment zones appear during the course of the ex
ment, and the experiment is reversible.

The methodology described in Sec. II C to predict ta
curves cannot be extended to the very large values ofa0 /h
that result in contact geometries similar to that illustrated
Fig. 14. This type of contact cannot be viewed simply a

a
FIG. 12. Measured and calculated areas plotted against ex

mental displacement. The calculated area curve is determined
Eq. ~18!, using the experimental load and compliance and assum
Gc50.06 J/m2.

FIG. 13. The average stress-displacement curve for a gel l
with a0 /h525. The indenter was advanced into the layer and th
retracted until complete separation.
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EFFECTS OF GEOMETRIC CONFINEMENT ON THE . . . PHYSICAL REVIEW E 68, 021805 ~2003!
circular contact that is modified by detachment fingers t
propagate from the edges. For the expected limiting beha
for a0 /h→`, a critical displacement exists, above whi
one expects complete detachment to occur. This critical
placementd* can be estimated by a procedure outlined
Mönch and Herminghaus@6#, which is closely related to the
previous treatment of Ghataket al. @3#. These authors con
sidered the elastic energy required to impose the follow
sinusoidal displacement on an elastic film of thicknessh:

d5d0 sin~2px/l!. ~19!

For an incompressible film~Poisson’s ratio50.5), the elastic
strain energy associated with this perturbation is

U~q!5
A0d0

2Eq

6h

cosh2~q!1q2

sinh~q!cosh~q!2q
, ~20!

whereq52ph/l andA0 is the total interaction area betwee
the two surfaces (pa0

2 for a flat punch of radiusa0). In our
case fingering appears during contact with the indenter.

FIG. 14. Contact images corresponding to the curve show
Fig. 13. The first four images were taken during advancing cont
while the last image shows the morphology observed during re
ing contact.
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approximating the contact as a sine wave, we taked5d0 and
obtain the following expression for the compliance of t
film by comparing Eq.~20! to Eq. ~1!:

C~q!5
3h

pa0
2Eq

sinh~q!cosh~q!2q

cosh2~q!1q2 . ~21!

The compliance is maximized atq52.12, (l/h52.96),
where it has the value of 0.964h/A0E ' h/A0E .

An expression for the pull-off displacement can be o
tained by approximating the actual contact area as half
apparent contact area of the punch (A5A0/2),

C5
h

2AE
. ~22!

This form of the compliance can be combined with Eqs.~2!
and ~3! ~with G5Gc) to give an expression for the pull-of
displacementd* :

d* /h5~Gc /Eh!1/2. ~23!

Apart from a small difference in the prefactor, this valu
is identical to the pull-off displacement given by Eq.~13!,
obtained by assuming pull-off occurs when a circular cont
zone shrinks to give a radius of 0.45h. This result can be
explained by the fact that the fingering instability separa
the contact into zones that behave in some ways as if they
mechanically independent. Adhesive detachment for a hig
confined system therefore occurs in the following mann
The load initially increases very quickly as the imposed d
placement is increased. For an incompressible system,
compliance is given by Eq.~4!. For high values ofp/E, the
compliance is eventually increased by the appearance of
tachment fingers that propagate in from the edges of
punch. For low values ofp/E, the compliance is increase
by internal cavitation. In either case, Eq.~22! provides an
upper value for the compliance, representative of a con
geometry in which the fingering, or internal debonding r
sulting from cavitation, is fully developed. In general, th
compliance will be intermediate between these two
tremes, and increases throughout the test from the v
given by Eq.~4! to the value given by Eq.~22!. Detachment
occurs atd5d* in both cases. The initial slope, final pull-o
displacement, and integrated areas of the tack curves sh
in Figs. 4 and 5 are representative of the actual tack cur
but the fingering instabilities cause the real tack curves to
more rounded, with a lower value of the maximum stre
than the value that is predicted.

E. Characteristic dimensionless parameters

The overall deformation behavior of thin compliant sy
tems is determined by several dimensionless quantities.
first of these isa0 /h, which describes the geometric confin
ment of the system, andGc /Ea0 , which describes the impor
tance of adhesive forces relative to elastic forces. These
rameters have been combined to give a failure m
describing the deformation modes experienced by elastic
ers@7#. For samples in which internal cracks are not prese

in
t,
d-
5-9
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the deformation modes are edge crack propagation, co
sponding to adhesive failure propagating from the edge
the contact zone, and bulk instabilities, typically correspo
ing to internal cavitation. A transition from edge crack prop
gation to cavitation occurs when the average stress applie
adhesive material exceeds the elastic modulus. An imp
assumption in this prior treatment is thatp/E, the ratio of the
external pressure to the elastic modulus of the material, is
substantially greater than unity. Higher values ofp/E sup-
press internal cavitation, so that edge crack propagation
ceeds at values of the average stress that can be we
excess of the elastic modulus of the layer. Also, only ‘‘circ
lar’’ edge crack propagation was considered in Ref.@7#, as
opposed to the fingering modes that are described above
detailed deformation behavior of very soft elastic layers
actually quite rich and must be represented by a deforma
map of at least three dimensions, withp/E, a0 /h, and
Gc /Ea0 representing the three orthogonal axes.

Finally, it has been assumed to this point that the de
mation behavior is entirely determined by the balance
tween the elastic energy associated with deformation of
layer and the adhesion energy required to separate it fro
surface. Analysis of this problem for very large values
a0 /h predict characteristic wavelengths of the adhesive
stabilities that are 3.96 times the elastic layer thickness@6#.
While this value is qualitatively consistent with the resu
that we have obtained, some quantitative differences ca
attributed to the energy required to deform the free surfa
This energy is related to a ratio involving the elastic modu
of the layer and the Laplace pressure associated with cu
ture of the free surface. For very large values ofa/h, this
curvature is controlled byh, so that the characteristi
Laplace pressure is comparable tog/h. The quantityg/Eh
therefore emerges as an additional dimensionless param
that describes the importance of surface energy relativ
the deformation energy. We have made the implicit assu
tion in our analysis thatg/Eh is small. In fact, becauseGc
'2g for our gels,g/Eh'2(Gc /Ea0)(a0 /h), a quantity that
varies between 0.06 and 2 in our case. While we do
believe that these values ofg/Eh are large enough to sub
stantially modify the results that we have obtained, they w
affect the details, resulting in an increased value of the c
acteristic wavelength of the adhesive instabilities@6#.

V. CONCLUSIONS

The effect of confinement on the debonding behavior
compliant elastic layers has been investigated. The beha
tt
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that manifests during interfacial debonding is dependent
the layer thickness, with more highly confined samples
periencing fingerlike interfacial instabilities. The origins
these instabilities can be related to the nature of the st
distribution within the layer. A compliance-based fractu
mechanics analysis has been applied to experimental da
order to quantify the underlying physics of the debondi
morphologies. The various confinement-dependent behav
for different a0 /h ranges have been elaborated, and the
perimental debonding behaviors for increasing values
a0 /h have been described.

In order to express our results in an appropriately gen
alized form, we have defined the following four dimensio
less parameters that play an important role in determining
separation behavior of thin elastic layers.

~1! a0 /h. The ratio between the punch radius and t
adhesive layer thickness determines the stress distribu
under the punch. Fingering instabilities in the shape of
crack front are observed fora0 /h.1.

~2! Gc /Ea0 . This ratio describes the relative importan
of adhesive forces. For highly confined systems, the adhe
layer thickness is a more natural length than the punch ra
a0 , and a more natural dimensionless group isGc /Eh. The
square root of this quantity gives the overall effective str
that can be applied to the adhesive layer prior to detachm

~3! p/E. The ratio of the atmospheric pressure to the el
tic modulus determines the system’s potential for inter
cavitation. If the value of this parameter is much larger th
1, internal cavitation is suppressed. Internally debonded
eas appear at high values ofa0 /h by the propagation of
fingers from the edge of the contact zone. If these fing
pinch off so that the cavities are no longer open to the ex
nal environment, they behave as incompressible inclusio
provided thatp/E@1.

~4! g/Eh. This quantity relates the energy required
deform the free surface of the material to the elastic ene
required to deform the bulk of the material. While the ch
acteristic wavelength of the adhesive fingering instability
expected to increase for large values of this quantity,
qualitative features of the debonding process are not stro
affected forg/Eh,1.
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